Maximum-likelihood estimation of quantum measurement

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximum Likelihood Estimation of Parameters in Generalized Functional Linear Model

Sometimes, in practice, data are a function of another variable, which is called functional data. If the scalar response variable is categorical or discrete, and the covariates are functional, then a generalized functional linear model is used to analyze this type of data. In this paper, a truncated generalized functional linear model is studied and a maximum likelihood approach is used to esti...

متن کامل

Local solutions of maximum likelihood estimation in quantum state tomography

Maximum likelihood estimation is one of the most used methods in quantum state tomography, where the aim is to find the best density matrix for the description of a physical system. Results of measurements on the system should match the expected values produced by the density matrix. In some cases however, if the matrix is parameterized to ensure positivity and unit trace, the negative log-like...

متن کامل

Maximum Likelihood Estimation ∗ Clayton

This module introduces the maximum likelihood estimator. We show how the MLE implements the likelihood principle. Methods for computing th MLE are covered. Properties of the MLE are discussed including asymptotic e ciency and invariance under reparameterization. The maximum likelihood estimator (MLE) is an alternative to the minimum variance unbiased estimator (MVUE). For many estimation proble...

متن کامل

Maximum Likelihood Parameter Estimation

The problem of estimating the parameters for continuous-time partially observed systems is discussed. New exact lters for obtaining Maximum Likelihood (ML) parameter estimates via the Expectation Maximization algorithm are derived. The methodology exploits relations between incomplete and complete data likelihood and gradient of likelihood functions, which are derived using Girsanov's measure t...

متن کامل

Maximum Likelihood Estimation ∗

This module introduces the maximum likelihood estimator. We show how the MLE implements the likelihood principle. Methods for computing th MLE are covered. Properties of the MLE are discussed including asymptotic e ciency and invariance under reparameterization. The maximum likelihood estimator (MLE) is an alternative to the minimum variance unbiased estimator (MVUE). For many estimation proble...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review A

سال: 2001

ISSN: 1050-2947,1094-1622

DOI: 10.1103/physreva.64.024102